ALGORITHM 64

QUICKSORT

C. A. R. Hoare

Tlliott Brothers Ltd., Borehamwood, Hertfordshire, Eng.

procedure quicksort (A M,N); value M,N;
array A; integer M,N;
comment Quicksort is a very fast and convenient method of
sorting an array in the random-access store of a computer. The
entire contents of the store may be sorted, since no extra space is
required. The average number of comparisons made is 2(M—N) In
(N—M), and the average number of exchanges is one sixth this
amount. Suitable refinements of this method will be desirable for
its implementation on any actual computer;
begin integer 1,J;
if M < N then begin partition (A,M,N,1,J);
quicksort (A,M,J);
quicksort (A, I, N)
end
end quicksort

ALGORITHM 65

FIND

C. A. R. Hoare

Elliott Brothers Ltd., Borehamwood, Hertfordshire, Fng.

procedure find (A,M,NX); value M,NK;

array A; integer M,N K;
comment Find will assign to A [K] the value which it would
have if the array A [M:N] had been sorted. The array A will be
partly sorted, and subsequent entries will be faster than the first;

Communications of the ACM 321


http://crossmark.crossref.org/dialog/?doi=10.1145%2F366622.366644&domain=pdf&date_stamp=1961-07-01

begin integer [,J;

if M < N then begin partition (A, M, N, I, J);
if K=1 then find (AM,[K)
else if JXXK then find (A,J,N,K)
end

end find

ALGORITHM 66

INVRS

JoHN CAFFREY

Director of Research, Palo Alto Unified School District,
Palo Alto, California

procedure Invrs (t) size : (n); valuen; real arrayt; inte-
ger n;
comment Inverts a positive definite symmetric matrix t, of
order n, by a simplified variant of the square root method. Re-
places the n(n+1)/2 diagonal and superdiagonal elements of t
with elements of t, leaving subdiagonal elements unchanged.
Advantages: only n temporary storage registers are required, no
identity matrix is used, no square roots are computed, only n
divisions are performed, and, as n becomes large, the number of
multiplications approaches n3/2;
begin integer i, j, s; real array vil:n—1}; veal y, pivot;
for s : = 0 step 1 until n—1 do
begin pivot := 1.0/t[1,1];
begin pivot : = 1.0/t[1,1];
comment If t{1,1] £ 0, t is not positive defi-
nite;
for i := 2 step 1 until n do v[i—1] := t{1,i];
fori:= 1step 1 until n—1 do
begin tli,n] := y : = —v[i] X pivot;
for ] : = istep 1 untiln—1do

tli, 1 :=th + 1, i +1 + vljl Xy

end;
tln,n] : = —pivot

end;
comment At this point, elements of t™! occupy
the original array space but with signs reversed,
and the following statements effect a simple re-
flection;

fori:= 1step 1 until n do

for j : = istep 1 until n do ti,j] := —t{i,j]

end Invrs

ALGORITHM 67

CRAM

JouN CAFFREY

Director of Research, Palo Alto Unified School District,
Palo Alto, California

procedure CRAM (n, r, a) Result: (f); value n, r; integer
n, r; real array a, f;

comment CRAM stores, via an unspecified input procedure
READ, the diagonal and superdiagonal elements of a square sym-
metric matrix e, of order n, as a pseudo-array of dimension
1:n(n 4 1)/2. READ (u) puts one number into u. Elements eli, j]
are addressable as afe + j], wherec = (2n — i)(i — 1)/2and ¢[i + 1]
may be found as cli] + n — i. Since ¢[1] = 0, it is simpler to develop
a table of the ¢[i] by recursion, as shown in the sequence labelled
“table”’. Further manipulation of the elements so stored is illus-
trated by premultiplying a rectangular matrix f, of order n, r, by
the matrix e, replacing the elements of { with the new values, re-
quiring a temporary storage array v of dimension 1:n;

322 Communications of the ACM

begin integer i, j, k, m; real array v[lin]; reals;
integer array c[l:n];
table: j:= —n; k:=n+1; fori
begin
j:=j+k—1; ecli]:=] end;
load: fori:= 1stepluntilndo
begin for j : = i step 1 until n do READ (v[j]); m :=

:= 1 step 1 until n do

clil;
for k : = i step 1 until n do ajm + k] : = vik] end;
premult: forj :=1step 1l untilrdo
begin for i := 1 step 1 until n do
begin s : = 0.0;
for k := 1step 1l untili do
begin m := c[k]; s := 8 + a[m + i]
Xflk, j] end;
fork := i+ 1step1until ndo
s:=s+ alm + k] X flk, jl; viil=s
end;
for k : = 1 step 1 until n do f[k, j] = v[k]
end
end CRAM

REMARK ON ALGORITHM 53

Nth ROOTS OF A COMPLEX NUMBER (John R.
Herndon, Comm. ACM 4, Apr. 1961)

C. W. NEsror, Jr.

Oak Ridge National Laboratory, Oak Ridge, Tennessee

A considerable saving of machine time for N = 3 would result
from the use of the recursion formulas for the sine and cosine in
place of an entry into a sine-cosine subroutine in the do loop
associated with the Nth roots of a complex number. That is, one
could use

sin (n + 1) = sin ng cosf + cos nd sinf
cos (n 4 1)8 = cos nd cos® — sin nd sind,
at the cost of some additional storage.
We have found this procedure to be very efficient in problems
dealing with Fourier analysis, as suggested by G. Goerzel in
chapter 24 of Mathematical Methods for Digital Computers.

Contributions to this department must be in the form
stated in the Algorithms Department policy statement
(Communications, February, 1960) except that ALGOL 60
notation should be used (see Communications, May, 1960).
Contributions should be sent in duplicate to J. H.
Wegstein, Computation Laboratory, National Bureau of
Standards, Washington 25, D. C. Algorithms should be in
the Publication form of ALGOL 60 and written in a style
patterned after the most recent algorithms appearing in this
department.

Although each algorithm has been tested by its con-
tributor, no warranty, express or implied, is made by the
contributor, the editor, or the Association for Computing
Machinery as to the accuracy and functioning of the al-
gorithm and related algorithm material and no responsi-
bility is assumed by the contributor, the editor, or the
Association for Computing Machinery in connection there-
with.

The reproduction of algorithms appearing in this de-
partment is explicitly permitted without any charge. When
reproduction is for publication purposes, reference must be
made to the algorithm author and to the Communications
issue bearing the algorithm.






